時(shí)間:2023-02-27 11:15:12
序論:在您撰寫(xiě)實(shí)數(shù)教案時(shí),參考他人的優(yōu)秀作品可以開(kāi)闊視野,小編為您整理的7篇范文,希望這些建議能夠激發(fā)您的創(chuàng)作熱情,引導(dǎo)您走向新的創(chuàng)作高度。

【關(guān)鍵詞】高中數(shù)學(xué) 課堂教學(xué) 學(xué)案式教學(xué)
陶行知先生說(shuō):“好的先生不是教書(shū),不是教學(xué)生,乃是教學(xué)生學(xué)。”學(xué)習(xí)應(yīng)該是學(xué)習(xí)者在其已有的知識(shí)和經(jīng)驗(yàn)基礎(chǔ)之上進(jìn)行的主動(dòng)構(gòu)建的過(guò)程,是學(xué)習(xí)者內(nèi)在的思維活動(dòng)與外部學(xué)習(xí)環(huán)境共同作用的結(jié)果。在實(shí)踐“學(xué)案式”教學(xué)法的過(guò)程中,我逐漸感受到“學(xué)案式”教學(xué)法確實(shí)可以實(shí)現(xiàn)這一目的,為學(xué)生能夠終身學(xué)習(xí)奠定基礎(chǔ)。
在運(yùn)用學(xué)案的教學(xué)過(guò)程中,我認(rèn)為學(xué)案的編制應(yīng)體現(xiàn)以下幾個(gè)部分:
學(xué)案中首先要體現(xiàn)出明確,具體的學(xué)習(xí)目標(biāo)。即知識(shí)與技能目標(biāo),過(guò)程與方法目標(biāo),情感、態(tài)度與價(jià)值觀目標(biāo),以及教學(xué)重點(diǎn)、難點(diǎn)。布魯納認(rèn)為:“有效的教學(xué)始于準(zhǔn)確地知道希望達(dá)到的目標(biāo)是什么。學(xué)案設(shè)計(jì)的關(guān)鍵所在是設(shè)計(jì)恰當(dāng)?shù)膯?wèn)題從而引導(dǎo)學(xué)生探索求知。在講《不等關(guān)系與不等式》這節(jié)課時(shí),我在課前預(yù)備這一環(huán)節(jié)設(shè)計(jì)了這樣的問(wèn)題:
認(rèn)真閱讀教材,獨(dú)立完成后,小組交流討論各自的觀點(diǎn)和看法。
1.用數(shù)學(xué)符號(hào) 連接兩個(gè)數(shù)或代數(shù)式,以表示它們之間的 關(guān)系,含有這些不等號(hào)的式子叫做
。
2.?dāng)?shù)軸上的任意兩點(diǎn)中,右邊的點(diǎn)對(duì)應(yīng)的實(shí)數(shù)總比左邊的點(diǎn)對(duì)應(yīng)的實(shí)數(shù) 。
3.a(chǎn)≥b的含有是 ;
若a>b,則a≥b是 命題;
若a≥b,則a=b是 命題。
4.比較兩個(gè)實(shí)數(shù)大小的依據(jù)是:
ab>0?圳 ;ab=0?圳 ;ab
5.作差比較兩個(gè)代數(shù)式的大小過(guò)程中,變形的方法常有 和 .
這一環(huán)節(jié)也可以做為“前置作業(yè)”布置給學(xué)生,讓學(xué)生在新舊知識(shí)的比較中找出共同點(diǎn)與區(qū)別,順利地完成知識(shí)的正遷移,通過(guò)類(lèi)似的探索解決新問(wèn)題,使學(xué)生感到知識(shí)易學(xué)、會(huì)學(xué),從而樂(lè)學(xué)。課堂上教師則可以組織學(xué)生討論前置作業(yè)中的有關(guān)問(wèn)題。值得注意的是,在學(xué)生討論交流過(guò)程中,教師應(yīng)積極引導(dǎo)學(xué)生緊扣教材、學(xué)案,針對(duì)學(xué)案中的問(wèn)題展開(kāi)討論交流,避免草草了事或形式主義,最大限度地提高課堂教學(xué)效率。教師根據(jù)教學(xué)重點(diǎn),難點(diǎn)及學(xué)生在自學(xué)交流過(guò)程中遇到的問(wèn)題,進(jìn)行重點(diǎn)講解。
教師要想設(shè)計(jì)出恰當(dāng)?shù)恼n前準(zhǔn)備作業(yè),必須熟悉并吃透教材,領(lǐng)悟相應(yīng)的重難點(diǎn),教學(xué)目標(biāo)要定位準(zhǔn)確。如果教師布置課前準(zhǔn)備作業(yè)時(shí)對(duì)目標(biāo)把握的不明確、不準(zhǔn)確,那么課堂上學(xué)生的交流也只能停留在泛泛而談的淺層次上,教師更不能引領(lǐng)學(xué)生進(jìn)行有效交流。我認(rèn)為數(shù)學(xué)老師應(yīng)依據(jù)本學(xué)科的特點(diǎn),把握住清晰、準(zhǔn)確、合適的目標(biāo)定位,在不改變現(xiàn)行教材編排的基礎(chǔ)上,一是要考慮如何精心設(shè)計(jì)前置性學(xué)習(xí)的內(nèi)容;二是要思考哪些具有開(kāi)放且有價(jià)值的問(wèn)題需要學(xué)生充分的探索與研究。在布置前置性作業(yè)和備課的過(guò)程中向?qū)W生提出了有價(jià)值的問(wèn)題,只有有了問(wèn)題的開(kāi)放,才有可能帶來(lái)探索的開(kāi)放,繼而形成思維的開(kāi)放。科學(xué)的前置性作業(yè)的完成,使得課內(nèi)研究的深度與廣度得到進(jìn)一步拓展,同時(shí)也使得數(shù)學(xué)學(xué)習(xí)的思維性、開(kāi)放性、邏輯化等問(wèn)題都能得到有效解決。讓學(xué)生有備而來(lái)的學(xué),這也才是生命的課堂、平等的課堂。
學(xué)案導(dǎo)學(xué)的最后一個(gè)環(huán)節(jié)是當(dāng)堂檢測(cè)。檢測(cè)的設(shè)計(jì)應(yīng)緊扣本節(jié)課的教學(xué)內(nèi)容和能力培養(yǎng)目標(biāo)及學(xué)生的認(rèn)知水平進(jìn)行。對(duì)問(wèn)題的設(shè)計(jì),應(yīng)注意多設(shè)疑,在無(wú)疑――有疑――無(wú)疑的過(guò)程中,使學(xué)生由未知到有知,由淺入深,由表入里,由此入彼地掌握知識(shí),增強(qiáng)學(xué)習(xí)能力。
虛假的學(xué)問(wèn)比無(wú)知更糟糕。無(wú)知好比一塊空地,可以耕耘和播種;虛假的學(xué)問(wèn)就象一塊長(zhǎng)滿雜草的荒地,幾乎無(wú)法把草拔盡。就像不扎實(shí)的數(shù)學(xué)基礎(chǔ)。下面就是小編為大家梳理歸納的內(nèi)容,希望能夠幫助到大家。
2020北師大九年級(jí)下冊(cè)數(shù)學(xué)教案:正弦和余弦一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
使學(xué)生知道當(dāng)直角三角形的銳角固定時(shí),它的對(duì)邊、鄰邊與斜邊的比值也都固定這一事實(shí).
(二)能力訓(xùn)練點(diǎn)
逐步培養(yǎng)學(xué)生會(huì)觀察、比較、分析、概括等邏輯思維能力.
(三)德育滲透點(diǎn)
引導(dǎo)學(xué)生探索、發(fā)現(xiàn),以培養(yǎng)學(xué)生獨(dú)立思考、勇于創(chuàng)新的精神和良好的學(xué)習(xí)習(xí)慣.
二、教學(xué)重點(diǎn)、難點(diǎn)
1.重點(diǎn):使學(xué)生知道當(dāng)銳角固定時(shí),它的對(duì)邊、鄰邊與斜邊的比值也是固定的這一事實(shí).
2.難點(diǎn):學(xué)生很難想到對(duì)任意銳角,它的對(duì)邊、鄰邊與斜邊的比值也是固定的事實(shí),關(guān)鍵在于教師引導(dǎo)學(xué)生比較、分析,得出結(jié)論.
三、教學(xué)步驟
(一)明確目標(biāo)
1.如圖6-1,長(zhǎng)5米的梯子架在高為3米的墻上,則A、B間距離為多少米?
2.長(zhǎng)5米的梯子以?xún)A斜角∠CAB為30°靠在墻上,則A、B間的距離為多少?
3.若長(zhǎng)5米的梯子以?xún)A斜角40°架在墻上,則A、B間距離為多少?
4.若長(zhǎng)5米的梯子靠在墻上,使A、B間距為2米,則傾斜角∠CAB為多少度?
前兩個(gè)問(wèn)題學(xué)生很容易回答.這兩個(gè)問(wèn)題的設(shè)計(jì)主要是引起學(xué)生的回憶,并使學(xué)生意識(shí)到,本章要用到這些知識(shí).但后兩個(gè)問(wèn)題的設(shè)計(jì)卻使學(xué)生感到疑惑,這對(duì)初三年級(jí)這些好奇、好勝的學(xué)生來(lái)說(shuō),起到激起學(xué)生的學(xué)習(xí)興趣的作用.同時(shí)使學(xué)生對(duì)本章所要學(xué)習(xí)的內(nèi)容的特點(diǎn)有一個(gè)初步的了解,有些問(wèn)題單靠勾股定理或含30°角的直角三角形和等腰直角三角形的知識(shí)是不能解決的,解決這類(lèi)問(wèn)題,關(guān)鍵在于找到一種新方法,求出一條邊或一個(gè)未知銳角,只要做到這一點(diǎn),有關(guān)直角三角形的其他未知邊角就可用學(xué)過(guò)的知識(shí)全部求出來(lái).
通過(guò)四個(gè)例子引出課題.
(二)整體感知
1.請(qǐng)每一位同學(xué)拿出自己的三角板,分別測(cè)量并計(jì)算30°、45°、60°角的對(duì)邊、鄰邊與斜邊的比值.
學(xué)生很快便會(huì)回答結(jié)果:無(wú)論三角尺大小如何,其比值是一個(gè)固定的值.程度較好的學(xué)生還會(huì)想到,以后在這些特殊直角三角形中,只要知道其中一邊長(zhǎng),就可求出其他未知邊的長(zhǎng).
2.請(qǐng)同學(xué)畫(huà)一個(gè)含40°角的直角三角形,并測(cè)量、計(jì)算40°角的對(duì)邊、鄰邊與斜邊的比值,學(xué)生又高興地發(fā)現(xiàn),不論三角形大小如何,所求的比值是固定的.大部分學(xué)生可能會(huì)想到,當(dāng)銳角取其他固定值時(shí),其對(duì)邊、鄰邊與斜邊的比值也是固定的嗎?
這樣做,在培養(yǎng)學(xué)生動(dòng)手能力的同時(shí),也使學(xué)生對(duì)本節(jié)課要研究的知識(shí)有了整體感知,喚起學(xué)生的求知欲,大膽地探索新知.
(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)與目標(biāo)完成過(guò)程
1.通過(guò)動(dòng)手實(shí)驗(yàn),學(xué)生會(huì)猜想到“無(wú)論直角三角形的銳角為何值,它的對(duì)邊、鄰邊與斜邊的比值總是固定不變的”.但是怎樣證明這個(gè)命題呢?學(xué)生這時(shí)的思維很活躍.對(duì)于這個(gè)問(wèn)題,部分學(xué)生可能能解決它.因此教師此時(shí)應(yīng)讓學(xué)生展開(kāi)討論,獨(dú)立完成.
2.學(xué)生經(jīng)過(guò)研究,也許能解決這個(gè)問(wèn)題.若不能解決,教師可適當(dāng)引導(dǎo):
若一組直角三角形有一個(gè)銳角相等,可以把其
頂點(diǎn)A1,A2,A3重合在一起,記作A,并使直角邊AC1,AC2,AC3……落在同一條直線上,則斜邊AB1,AB2,AB3……落在另一條直線上.這樣同學(xué)們能解決這個(gè)問(wèn)題嗎?引導(dǎo)學(xué)生獨(dú)立證明:易知,B1C1∥B2C2∥B3C3……,AB1C1∽AB2C2∽AB3C3∽……,
形中,∠A的對(duì)邊、鄰邊與斜邊的比值,是一個(gè)固定值.
通過(guò)引導(dǎo),使學(xué)生自己獨(dú)立掌握了重點(diǎn),達(dá)到知識(shí)教學(xué)目標(biāo),同時(shí)培養(yǎng)學(xué)生能力,進(jìn)行了德育滲透.
而前面導(dǎo)課中動(dòng)手實(shí)驗(yàn)的設(shè)計(jì),實(shí)際上為突破難點(diǎn)而設(shè)計(jì).這一設(shè)計(jì)同時(shí)起到培養(yǎng)學(xué)生思維能力的作用.
練習(xí)題為 作了孕伏同時(shí)使學(xué)生知道任意銳角的對(duì)邊與斜邊的比值都能求出來(lái).
(四)總結(jié)與擴(kuò)展
1.引導(dǎo)學(xué)生作知識(shí)總結(jié):本節(jié)課在復(fù)習(xí)勾股定理及含30°角直角三角形的性質(zhì)基礎(chǔ)上,通過(guò)動(dòng)手實(shí)驗(yàn)、證明,我們發(fā)現(xiàn),只要直角三角形的銳角固定,它的對(duì)邊、鄰邊與斜邊的比值也是固定的.
教師可適當(dāng)補(bǔ)充:本節(jié)課經(jīng)過(guò)同學(xué)們自己動(dòng)手實(shí)驗(yàn),大膽猜測(cè)和積極思考,我們發(fā)現(xiàn)了一個(gè)新的結(jié)論,相信大家的邏輯思維能力又有所提高,希望大家發(fā)揚(yáng)這種創(chuàng)新精神,變被動(dòng)學(xué)知識(shí)為主動(dòng)發(fā)現(xiàn)問(wèn)題,培養(yǎng)自己的創(chuàng)新意識(shí).
2.擴(kuò)展:當(dāng)銳角為30°時(shí),它的對(duì)邊與斜邊比值我們知道.今天我們又發(fā)現(xiàn),銳角任意時(shí),它的對(duì)邊與斜邊的比值也是固定的.如果知道這個(gè)比值,已知一邊求其他未知邊的問(wèn)題就迎刃而解了.看來(lái)這個(gè)比值很重要,下節(jié)課我們就著重研究這個(gè)“比值”,有興趣的同學(xué)可以提前預(yù)習(xí)一下.通過(guò)這種擴(kuò)展,不僅對(duì)正、余弦概念有了初步印象,同時(shí)又激發(fā)了學(xué)生的興趣.
四、布置作業(yè)
本節(jié)課內(nèi)容較少,而且是為正、余弦概念打基礎(chǔ)的,因此課后應(yīng)要求學(xué)生預(yù)習(xí)正余弦概念.
五、板書(shū)設(shè)計(jì)
2020人教版九年級(jí)數(shù)學(xué)教案:函數(shù)教學(xué)目標(biāo):
1、進(jìn)一步理解函數(shù)的概念,能從簡(jiǎn)單的實(shí)際事例中,抽象出函數(shù)關(guān)系,列出函數(shù)解析式;
2、使學(xué)生分清常量與變量,并能確定自變量的取值范圍.
3、會(huì)求函數(shù)值,并體會(huì)自變量與函數(shù)值間的對(duì)應(yīng)關(guān)系.
4、使學(xué)生掌握解析式為只含有一個(gè)自變量的簡(jiǎn)單的整式、分式、二次根式的函數(shù)的自變量的取值范圍的求法.
5、通過(guò)函數(shù)的教學(xué)使學(xué)生體會(huì)到事物是相互聯(lián)系的.是有規(guī)律地運(yùn)動(dòng)變化著的.
教學(xué)重點(diǎn):了解函數(shù)的意義,會(huì)求自變量的取值范圍及求函數(shù)值.
教學(xué)難點(diǎn):函數(shù)概念的抽象性.
教學(xué)過(guò)程:
(一)引入新課:
上一節(jié)課我們講了函數(shù)的概念:一般地,設(shè)在一個(gè)變化過(guò)程中有兩個(gè)變量x、y,如果對(duì)于x的每一個(gè)值,y都有的值與它對(duì)應(yīng),那么就說(shuō)x是自變量,y是x的函數(shù).
生活中有很多實(shí)例反映了函數(shù)關(guān)系,你能舉出一個(gè),并指出式中的自變量與函數(shù)嗎?
1、學(xué)校計(jì)劃組織一次春游,學(xué)生每人交30元,求總金額y(元)與學(xué)生數(shù)n(個(gè))的關(guān)系.
2、為迎接新年,班委會(huì)計(jì)劃購(gòu)買(mǎi)100元的小禮物送給同學(xué),求所能購(gòu)買(mǎi)的總數(shù)n(個(gè))與單價(jià)(a)元的關(guān)系.
解:1、y=30n
y是函數(shù),n是自變量
2、,n是函數(shù),a是自變量.
(二)講授新課
剛才所舉例子中的函數(shù),都是利用數(shù)學(xué)式子即解析式表示的.這種用數(shù)學(xué)式子表示函數(shù)時(shí),要考慮自變量的取值必須使解析式有意義.如第一題中的學(xué)生數(shù)n必須是正整數(shù).
例1、求下列函數(shù)中自變量x的取值范圍.
(1)
(2)
(3)
(4)
(5)
(6)
分析:在(1)、(2)中,x取任意實(shí)數(shù), 與 都有意義.
(3)小題的 是一個(gè)分式,分式成立的條件是分母不為0.這道題的分母是 ,因此要求 .
同理(4)小題的 也是分式,分式成立的條件是分母不為0,這道題的分母是 ,因此要求 且 .
第(5)小題, 是二次根式,二次根式成立的條件是被開(kāi)方數(shù)大于、等于零.的被開(kāi)方數(shù)是 .
同理,第(6)小題 也是二次根式, 是被開(kāi)方數(shù),
.
解:(1)全體實(shí)數(shù)
(2)全體實(shí)數(shù)
(3)
(4) 且
(5)
(6)
小結(jié):從上面的例題中可以看出函數(shù)的解析式是整數(shù)時(shí),自變量可取全體實(shí)數(shù);函數(shù)的解析式是分式時(shí),自變量的取值應(yīng)使分母不為零;函數(shù)的解析式是二次根式時(shí),自變量的取值應(yīng)使被開(kāi)方數(shù)大于、等于零.
注意:有些同學(xué)沒(méi)有真正理解解析式是分式時(shí),自變量的取值應(yīng)使分母不為零,片面地認(rèn)為,凡是分母,只要即可.教師可將解題步驟設(shè)計(jì)得細(xì)致一些.先提問(wèn)本題的分母是什么?然后再要求分式的分母不為零.求出使函數(shù)成立的自變量的取值范圍.二次根式的問(wèn)題也與次類(lèi)似.
但象第(4)小題,有些同學(xué)會(huì)犯這樣的錯(cuò)誤,將答案寫(xiě)成 或.在解一元二次方程時(shí),方程的兩根用“或者”聯(lián)接,在這里就直接拿過(guò)來(lái)用.限于初中學(xué)生的接受能力,教師可聯(lián)系日常生活講清“且”與“或”.說(shuō)明這里 與是并且的關(guān)系.即2與-1這兩個(gè)值x都不能取.
例2、自行車(chē)保管站在某個(gè)星期日保管的自行車(chē)共有3500輛次,其中變速車(chē)保管費(fèi)是每輛一次0.5元,一般車(chē)保管費(fèi)是每次一輛0.3元.
(1)若設(shè)一般車(chē)停放的輛次數(shù)為x,總的保管費(fèi)收入為y元,試寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式;
(2)若估計(jì)前來(lái)停放的3500輛次自行車(chē)中,變速車(chē)的輛次不小于25%,但不大于40%,試求該保管站這個(gè)星期日收入保管費(fèi)總數(shù)的范圍.
解:(1)
(x是正整數(shù),
(2)若變速車(chē)的輛次不小于25%,但不大于40%,
則
收入在1225元至1330元之間
總結(jié):對(duì)于反映實(shí)際問(wèn)題的函數(shù)關(guān)系,應(yīng)使得實(shí)際問(wèn)題有意義.這樣,就要求聯(lián)系實(shí)際,具體問(wèn)題具體分析.
對(duì)于函數(shù) ,當(dāng)自變量 時(shí),相應(yīng)的函數(shù)y的值是 .60叫做這個(gè)函數(shù)當(dāng) 時(shí)的函數(shù)值.
例3、求下列函數(shù)當(dāng) 時(shí)的函數(shù)值:
(1)
(2)
(3)
(4)
解:1)當(dāng) 時(shí),
(2)當(dāng) 時(shí),
(3)當(dāng) 時(shí),
(4)當(dāng) 時(shí),
注:本例既鍛煉了學(xué)生的計(jì)算能力,又創(chuàng)設(shè)了情境,讓學(xué)生體會(huì)對(duì)于x的每一個(gè)值,y都有確定的值與之對(duì)應(yīng).以此加深對(duì)函數(shù)的理解.
(二)小結(jié):
這節(jié)課,我們進(jìn)一步地研究了有關(guān)函數(shù)的概念.在研究函數(shù)關(guān)系時(shí)首先要考慮自變量的取值范圍.因此,要求大家能掌握解析式含有一個(gè)自變量的簡(jiǎn)單的整式、分式、二次根式的函數(shù)的自變量取值范圍的求法,并能求出其相應(yīng)的函數(shù)值.另外,對(duì)于反映實(shí)際問(wèn)題的函數(shù)關(guān)系,要具體問(wèn)題具體分析.
人教版九年級(jí)數(shù)學(xué)上冊(cè)教案:直接開(kāi)平方法
理解一元二次方程“降次”——轉(zhuǎn)化的數(shù)學(xué)思想,并能應(yīng)用它解決一些具體問(wèn)題.
提出問(wèn)題,列出缺一次項(xiàng)的一元二次方程ax2+c=0,根據(jù)平方根的意義解出這個(gè)方程,然后知識(shí)遷移到解a(ex+f)2+c=0型的一元二次方程.
重點(diǎn)
運(yùn)用開(kāi)平方法解形如(x+m)2=n(n≥0)的方程,領(lǐng)會(huì)降次——轉(zhuǎn)化的數(shù)學(xué)思想.
難點(diǎn)
通過(guò)根據(jù)平方根的意義解形如x2=n的方程,將知識(shí)遷移到根據(jù)平方根的意義解形如(x+m)2=n(n≥0)的方程.
一、復(fù)習(xí)引入
學(xué)生活動(dòng):請(qǐng)同學(xué)們完成下列各題.
問(wèn)題1:填空
(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.
解:根據(jù)完全平方公式可得:(1)16 4;(2)4 2;(3)(p2)2 p2.
問(wèn)題2:目前我們都學(xué)過(guò)哪些方程?二元怎樣轉(zhuǎn)化成一元?一元二次方程與一元一次方程有什么不同?二次如何轉(zhuǎn)化成一次?怎樣降次?以前學(xué)過(guò)哪些降次的方法?
二、探索新知
上面我們已經(jīng)講了x2=9,根據(jù)平方根的意義,直接開(kāi)平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開(kāi)平方的方法求解呢?
(學(xué)生分組討論)
老師點(diǎn)評(píng):回答是肯定的,把2t+1變?yōu)樯厦娴膞,那么2t+1=±3
即2t+1=3,2t+1=-3
方程的兩根為t1=1,t2=-2
例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2
分析:(1)x2+4x+4是一個(gè)完全平方公式,那么原方程就轉(zhuǎn)化為(x+2)2=1.
(2)由已知,得:(x+3)2=2
直接開(kāi)平方,得:x+3=±2
即x+3=2,x+3=-2
所以,方程的兩根x1=-3+2,x2=-3-2
解:略.
例2 市政府計(jì)劃2年內(nèi)將人均住房面積由現(xiàn)在的10 m2提高到14.4 m2,求每年人均住房面積增長(zhǎng)率.
分析:設(shè)每年人均住房面積增長(zhǎng)率為x,一年后人均住房面積就應(yīng)該是10+10x=10(1+x);二年后人均住房面積就應(yīng)該是10(1+x)+10(1+x)x=10(1+x)2
解:設(shè)每年人均住房面積增長(zhǎng)率為x,
則:10(1+x)2=14.4
(1+x)2=1.44
直接開(kāi)平方,得1+x=±1.2
即1+x=1.2,1+x=-1.2
所以,方程的兩根是x1=0.2=20%,x2=-2.2
因?yàn)槊磕耆司》棵娣e的增長(zhǎng)率應(yīng)為正的,因此,x2=-2.2應(yīng)舍去.
所以,每年人均住房面積增長(zhǎng)率應(yīng)為20%.
(學(xué)生小結(jié))老師引導(dǎo)提問(wèn):解一元二次方程,它們的共同特點(diǎn)是什么?
共同特點(diǎn):把一個(gè)一元二次方程“降次”,轉(zhuǎn)化為兩個(gè)一元一次方程.我們把這種思想稱(chēng)為“降次轉(zhuǎn)化思想”.
三、鞏固練習(xí)
教材第6頁(yè) 練習(xí).
四、課堂小結(jié)
本節(jié)課應(yīng)掌握:由應(yīng)用直接開(kāi)平方法解形如x2=p(p≥0)的方程,那么x=±p轉(zhuǎn)化為應(yīng)用直接開(kāi)平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,達(dá)到降次轉(zhuǎn)化之目的.若p
關(guān)鍵詞:中職數(shù)學(xué) 教學(xué)方法 學(xué)案引導(dǎo)法
中圖分類(lèi)號(hào):G712 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1673-9795(2014)02(b)-0111-01
由于中職學(xué)生數(shù)學(xué)基礎(chǔ)差,大部分學(xué)生對(duì)數(shù)學(xué)興趣不濃,主動(dòng)性不強(qiáng)。面對(duì)這種情況,職業(yè)高中的數(shù)學(xué)教師就要因生而變、因材施教,采取靈活多樣的教學(xué)方法,在注重知識(shí)講授深度和廣度的基礎(chǔ)上,更要注重教學(xué)方法的藝術(shù)性、教學(xué)內(nèi)容的靈活性、教學(xué)氛圍的活躍性,寓教于樂(lè),寓學(xué)于導(dǎo)。新一輪高中數(shù)學(xué)新課改明確提出:讓學(xué)生成為學(xué)習(xí)的主人,倡導(dǎo)學(xué)生自主探索,主動(dòng)學(xué)習(xí)。為此,我在教學(xué)中極力借鑒同行們的先進(jìn)經(jīng)驗(yàn),大膽嘗試“學(xué)案引導(dǎo)式”教學(xué)法,取得了良好的教學(xué)效果。
1 “學(xué)案引導(dǎo)式”教學(xué)法的意義和結(jié)構(gòu)
“學(xué)案引導(dǎo)式”教學(xué)法是一種促進(jìn)學(xué)生自主學(xué)習(xí)的課堂教學(xué)方法,其目標(biāo)是以教材為載體,以學(xué)案為手段,引導(dǎo)學(xué)生自主學(xué)習(xí),養(yǎng)成良好的學(xué)習(xí)習(xí)慣,逐漸地學(xué)會(huì)學(xué)習(xí)。這種教學(xué)法改變了教師的教學(xué)觀和學(xué)生的學(xué)習(xí)觀,相信并充分挖掘?qū)W生的潛能,讓學(xué)生真正體會(huì)到學(xué)習(xí)的成功與快樂(lè)。
“學(xué)案引導(dǎo)法”的基本結(jié)構(gòu)包括教師課前的指導(dǎo),課中的引導(dǎo)和課后的反復(fù)釋疑。具體包含四部分:學(xué)習(xí)引導(dǎo)+問(wèn)題引導(dǎo)+總結(jié)引導(dǎo)+拓展引導(dǎo)。
下面是我在“一元二次不等式的圖解法”一節(jié)教學(xué)中的學(xué)案設(shè)計(jì),提出來(lái)與大家共同商討改進(jìn)。
學(xué)習(xí)內(nèi)容:中等職業(yè)教育國(guó)家規(guī)劃教材數(shù)學(xué)基礎(chǔ)模塊上冊(cè)“第二章不等式”。
§2.3.2一元二次不等式的圖解法。
學(xué)時(shí):一學(xué)時(shí)。
學(xué)習(xí)模式:
【學(xué)習(xí)引導(dǎo)】
(1)自主學(xué)習(xí)。
1)讀教材P42~P44到練習(xí)止。
2)回答問(wèn)題:
①本節(jié)內(nèi)容所講的一元二次不等式的解集與哪些因素有關(guān)系?
②當(dāng)a>0時(shí),二次函數(shù)y=ax2+bx+c的圖像在坐標(biāo)系中的位置有哪幾種情況?
③這些不同的位置由什么決定?如何計(jì)算?
3)完成練習(xí)。
4)小結(jié)。
(2)方法指導(dǎo)。
1)閱讀本節(jié)內(nèi)容時(shí),必須對(duì)照初中學(xué)習(xí)的二次函數(shù)圖像―― 拋物線在坐標(biāo)系中的三種位置情況:即與X軸有兩個(gè)交點(diǎn),有一個(gè)交點(diǎn)和無(wú)交點(diǎn)(先考慮開(kāi)口朝上的情況)。觀察圖像上縱坐標(biāo)大于零的點(diǎn)和小于零的點(diǎn)在哪里?
2)本節(jié)內(nèi)容屬“數(shù)形結(jié)合”的問(wèn)題,應(yīng)將位于x軸上方的圖像和位于x軸下方的圖像上點(diǎn)的坐標(biāo)的范圍與一元二次不等式ac2+bx+c>0(或者0)的解聯(lián)系起來(lái),即就是圖像上縱坐標(biāo)y>0,y=0,y
3)閱讀本節(jié)內(nèi)容時(shí)能否想到什么內(nèi)容,并與之作比較。
【思考引導(dǎo)】
(1)提問(wèn)題。
1)二次函數(shù),一元二次方程,一元二次不等式三者有何聯(lián)系?
2)當(dāng)a>0時(shí),解一元二次不等式ac2+bx+c>0(或者
3)一元二次不等式ac2+bx+c>0(或者0)的求解有哪幾種情況?
4)當(dāng)a
(2)變題目。
若一元二次不等式的解集為R或者?時(shí),與該不等式對(duì)應(yīng)的二次函數(shù)的圖像是什么情況?
【總結(jié)引導(dǎo)】
本節(jié)內(nèi)容:一元二次不等式y(tǒng)=ax2+ bx+c(a>0)的圖解法。
第一步:達(dá)標(biāo)(滿足哪兩個(gè)條件?)。
第二步:計(jì)算(哪個(gè)量?有什么用途?)。
第三步:分類(lèi)(可分成哪幾種情況?)。
第四步:寫(xiě)解集(依據(jù)是什么?)。
記憶方法:達(dá)標(biāo)―― 看=b2-4ac正負(fù)―― 分類(lèi)―― 寫(xiě)解集。
【拓展引導(dǎo)】
(1)課外作業(yè):P45習(xí)題2~4。
(2)m為何值時(shí),方程x2+2(m-1)x+3m2-11=0有兩個(gè)不相等的實(shí)數(shù)根?
(3)m為何值時(shí),二次函數(shù)y=mx2-(1-m)x+m與x軸無(wú)交點(diǎn)?
2 “學(xué)案引導(dǎo)法”的有關(guān)說(shuō)明
(1)學(xué)案與教材,教案的關(guān)系。
教材是專(zhuān)家依據(jù)課標(biāo)的理念設(shè)計(jì)編寫(xiě)的,其中的語(yǔ)言表達(dá)標(biāo)準(zhǔn)、規(guī)范、精簡(jiǎn)、書(shū)面化.教案是教師為上好一節(jié)課,根據(jù)教師本人的特點(diǎn),依據(jù)教材內(nèi)容,學(xué)生的情況設(shè)計(jì)的教學(xué)過(guò)程材料,僅供教師使用;學(xué)案是教師依據(jù)教材為了讓學(xué)生閱讀教材而編寫(xiě)的,并通過(guò)課前的學(xué)習(xí),課中的討論,課后的研究,使學(xué)生對(duì)概念理解后,用自己的語(yǔ)言對(duì)概念重新描述,并書(shū)寫(xiě)在學(xué)案上,較口語(yǔ)化,適合學(xué)生本人的復(fù)習(xí)和閱讀.供學(xué)生使用。
(2)學(xué)案特點(diǎn)。
①設(shè)計(jì)上應(yīng)站在學(xué)生角度考慮問(wèn)題。
②方法上要引導(dǎo)學(xué)生讀懂教材。
③內(nèi)容上包含所有的知識(shí),技能和方法。
④使用上它是階段性學(xué)習(xí)資料。
⑤手段上通過(guò)分層設(shè)計(jì),滿足各個(gè)層次學(xué)生的需要。
參考文獻(xiàn)
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn):
1.熟練運(yùn)用判別式判別一元二次方程根的情況.
2.學(xué)會(huì)運(yùn)用判別式求符合題意的字母的取值范圍和進(jìn)行有關(guān)的證明.
(二)能力訓(xùn)練點(diǎn):
1.培養(yǎng)學(xué)生思維的嚴(yán)密性,邏輯性和靈活性.
2.培養(yǎng)學(xué)生的推理論證能力.
(三)德育滲透點(diǎn):通過(guò)例題教學(xué),滲透分類(lèi)的思想.
二、教學(xué)重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決方法
1.教學(xué)重點(diǎn):運(yùn)用判別式求出符合題意的字母的取值范圍.
2.教學(xué)難點(diǎn):教科書(shū)上的黑體字“一元二次方程ax2+bx+c=0(a≠0),當(dāng)>0時(shí),有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)=0時(shí),有兩個(gè)相等的實(shí)數(shù)根;當(dāng)<0時(shí),沒(méi)有實(shí)數(shù)根”可看作一個(gè)定理,書(shū)上的“反過(guò)來(lái)也成立”,實(shí)際上是指它的逆命題也成立.對(duì)此的正確理解是本節(jié)課的難點(diǎn).可以把這個(gè)逆命題作為逆定理.
三、教學(xué)步驟
(一)明確目標(biāo)
上節(jié)課學(xué)習(xí)了一元二次方程根的判別式,得出結(jié)論:“一元二次方程ax2+bx+c=0(a≠0),當(dāng)>0時(shí),有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)=0時(shí),有兩個(gè)相等的實(shí)數(shù)根;當(dāng)<0時(shí),沒(méi)有實(shí)數(shù)根.”這個(gè)結(jié)論可以看作是一個(gè)定理.在這個(gè)判別方法中,包含了所有各種情況,所以反過(guò)來(lái)也成立,也就是說(shuō)上述結(jié)論的逆命題是成立的,可作為定理用.本節(jié)課的目標(biāo)就是利用其逆定理,求符合題意的字母的取值范圍,以及進(jìn)行有關(guān)的證明.
(二)整體感知
本節(jié)課是上節(jié)課的延續(xù)和深化,主要是在“明確目標(biāo)”中所提的逆定理的應(yīng)用.通過(guò)本節(jié)課的內(nèi)容的學(xué)習(xí),更加深刻體會(huì)到“定理”與“逆定理”的靈活應(yīng)用.不但不求根就可以知道根的情況,而且知道根的情況,還可以確定待定的未知數(shù)系數(shù)的取值,本節(jié)課內(nèi)容對(duì)學(xué)生嚴(yán)密的邏輯思維及思維全面性進(jìn)行恰如其分的訓(xùn)練.
(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)及目標(biāo)完成過(guò)程
1.復(fù)習(xí)提問(wèn)
(1)一元二次方程的一般形式?說(shuō)出二次項(xiàng)系數(shù),一次項(xiàng)系數(shù)及常數(shù)項(xiàng).
(2)一元二次方程的根的判別式是什么?用它怎樣判別根的情況?
2.將復(fù)習(xí)提問(wèn)中的問(wèn)題(2)的正確答案板書(shū),反之,即此命題的逆命題也成立,即“一元二次方程ax2+bx+c=0,如果方程有兩個(gè)不相等的實(shí)數(shù)根,則>0;如果方程有兩個(gè)相等的實(shí)數(shù)根,則=0;如果方程沒(méi)有實(shí)數(shù)根,則<0.”即根據(jù)方程的根的情況,可以決定值的符號(hào),‘’的符號(hào),可以確定待定的字母的取值范圍.請(qǐng)看下面的例題:
例1已知關(guān)于x的方程2x2-(4k+1)x+2k2-1=0,k取什么值時(shí)
(1)方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)方程有兩個(gè)相等的實(shí)數(shù)根;
(1)方程無(wú)實(shí)數(shù)根.
解:a=2,b=-4k-1,c=2k2-1,
b2-4ac=(-4k-1)2-4×2×(2k2-1)
=8k+9.
方程有兩個(gè)不相等的實(shí)數(shù)根.
方程有兩個(gè)相等的實(shí)數(shù)根.
方程無(wú)實(shí)數(shù)根.
本題應(yīng)先算出“”的值,再進(jìn)行判別.注意書(shū)寫(xiě)步驟的簡(jiǎn)練清楚.
練習(xí)1.已知關(guān)于x的方程x2+(2t+1)x+(t-2)2=0.
t取什么值時(shí),(1)方程有兩個(gè)不相等的實(shí)數(shù)根?(2)方程有兩個(gè)相等的實(shí)數(shù)根?(3)方程沒(méi)有實(shí)數(shù)根?
學(xué)生模仿例題步驟板書(shū)、筆答、體會(huì).
教師評(píng)價(jià),糾正不精練的步驟.
假設(shè)二項(xiàng)系數(shù)不是2,也不是1,而是k,還需考慮什么呢?如何作答?
練習(xí)2.已知:關(guān)于x的一元二次方程:
kx2+2(k+1)x+k=0有兩個(gè)實(shí)數(shù)根,求k的取值范圍.
和學(xué)生一起審題(1)“關(guān)于x的一元二次方程”應(yīng)考慮到k≠0.(2)“方程有兩個(gè)實(shí)數(shù)根”應(yīng)是有兩個(gè)相等的實(shí)數(shù)根或有兩個(gè)不相等的實(shí)數(shù)根,可得到≥0.由k≠0且≥0確定k的取值范圍.
解:=[2(k+1)]2-4k2=8k+4.
原方程有兩個(gè)實(shí)數(shù)根.
學(xué)生板書(shū)、筆答,教師點(diǎn)撥、評(píng)價(jià).
例求證:方程(m2+1)x2-2mx+(m2+4)=0沒(méi)有實(shí)數(shù)根.
分析:將算出,論證<0即可得證.
證明:=(-2m)2-4(m2+1)(m2+4)
=4m2-4m4-20m2-16
=-4(m4+4m2+4)
=-4(m2+2)2.
不論m為任何實(shí)數(shù),(m2+2)2>0.
-4(m2+2)2<0,即<0.
(m2+1)x2-2mx+(m2-4)=0,沒(méi)有實(shí)根.
本題結(jié)論論證的依據(jù)是“當(dāng)<0,方程無(wú)實(shí)數(shù)根”,在論證<0時(shí),先將恒等變形,得到判斷.一般情況都是配方后變形為:a2,a2+2,(a2+2)2,-a2,-(a2+2)2,-(a+2)2,……從而得到判斷.
本題是一道代數(shù)證明題,和幾何類(lèi)似,一定要做到步步有據(jù),推理嚴(yán)謹(jǐn).
此種題型的步驟可歸納如下:
(1)計(jì)算;(2)用配方法將恒等變形;
(3)判斷的符號(hào);(4)結(jié)論.
練習(xí):證明(x-1)(x-2)=k2有兩個(gè)不相等的實(shí)數(shù)根.
提示:將括號(hào)打開(kāi),整理成一般形式.
學(xué)生板書(shū)、筆答、評(píng)價(jià)、教師點(diǎn)撥.
(四)總結(jié)、擴(kuò)展
1.本節(jié)課的主要內(nèi)容是教科書(shū)上黑體字的應(yīng)用,求符合題意的字母的取值范圍以及進(jìn)行有關(guān)的證明.須注意以下幾點(diǎn):
(1)要用b2-4ac,要特別注意二次項(xiàng)系數(shù)不為零這一條件.
(2)認(rèn)真審題,嚴(yán)格區(qū)分條件和結(jié)論,譬如是已知>0,還是要證明>0.
(3)要證明≥0或<0,需將恒等變形為a2+2,-(a+2)2……從而得到判斷.
2.提高分析問(wèn)題、解決問(wèn)題的能力,提高推理嚴(yán)密性和思維全面性的能力.
四、布置作業(yè)
1.教材P.29中B1,2,3.
2.當(dāng)方程x2+2(a+1)x+a2+4a-5=0有實(shí)數(shù)根時(shí),求a的正整數(shù)解.
(2、3學(xué)有余力的學(xué)生做.)
五、板書(shū)設(shè)計(jì)
12.3一元二次方程根的判別式(二)
一、判別式的意義:……三、例1……四、例2……
=b2-4ac…………
二、方程ax2+bx+c=0(a≠0)
(1)當(dāng)>0,……練習(xí)1……練習(xí)2……
(2)當(dāng)=0,……
(3)當(dāng)<0,……
反之也成立.
六、作業(yè)參考答案
方程沒(méi)有實(shí)數(shù)根.
B3.證明:=(2k+1)2-4(k-1)=4k2+5
當(dāng)k無(wú)論取何實(shí)數(shù),4k2≥0,則4k2+5>0
>0
方程x2+(2k+1)x+k-1=0有兩個(gè)不相等的實(shí)數(shù)根.
2.解:方程有實(shí)根,
=[2(a+1)]-4(a2+4a-5)≥0
即:a≤3,a的正整數(shù)解為1,2,3
當(dāng)a=1,2,3時(shí),方程x2+2(a+1)x+a2+4a-5=0有實(shí)根.
3.分析:“方程”是一元一次方程,還是一元二次方程,需分情況討論:
(2)當(dāng)2m-1≠0時(shí),
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn):
1.熟練運(yùn)用判別式判別一元二次方程根的情況.
2.學(xué)會(huì)運(yùn)用判別式求符合題意的字母的取值范圍和進(jìn)行有關(guān)的證明.
(二)能力訓(xùn)練點(diǎn):
1.培養(yǎng)學(xué)生思維的嚴(yán)密性,邏輯性和靈活性.
2.培養(yǎng)學(xué)生的推理論證能力.
(三)德育滲透點(diǎn):通過(guò)例題教學(xué),滲透分類(lèi)的思想.
二、教學(xué)重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決方法
1.教學(xué)重點(diǎn):運(yùn)用判別式求出符合題意的字母的取值范圍.
2.教學(xué)難點(diǎn):教科書(shū)上的黑體字“一元二次方程ax2+bx+c=0(a≠0),當(dāng)>0時(shí),有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)=0時(shí),有兩個(gè)相等的實(shí)數(shù)根;當(dāng)<0時(shí),沒(méi)有實(shí)數(shù)根”可看作一個(gè)定理,書(shū)上的“反過(guò)來(lái)也成立”,實(shí)際上是指它的逆命題也成立.對(duì)此的正確理解是本節(jié)課的難點(diǎn).可以把這個(gè)逆命題作為逆定理.
三、教學(xué)步驟
(一)明確目標(biāo)
上節(jié)課學(xué)習(xí)了一元二次方程根的判別式,得出結(jié)論:“一元二次方程ax2+bx+c=0(a≠0),當(dāng)>0時(shí),有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)=0時(shí),有兩個(gè)相等的實(shí)數(shù)根;當(dāng)<0時(shí),沒(méi)有實(shí)數(shù)根.”這個(gè)結(jié)論可以看作是一個(gè)定理.在這個(gè)判別方法中,包含了所有各種情況,所以反過(guò)來(lái)也成立,也就是說(shuō)上述結(jié)論的逆命題是成立的,可作為定理用.本節(jié)課的目標(biāo)就是利用其逆定理,求符合題意的字母的取值范圍,以及進(jìn)行有關(guān)的證明.
(二)整體感知
本節(jié)課是上節(jié)課的延續(xù)和深化,主要是在“明確目標(biāo)”中所提的逆定理的應(yīng)用.通過(guò)本節(jié)課的內(nèi)容的學(xué)習(xí),更加深刻體會(huì)到“定理”與“逆定理”的靈活應(yīng)用.不但不求根就可以知道根的情況,而且知道根的情況,還可以確定待定的未知數(shù)系數(shù)的取值,本節(jié)課內(nèi)容對(duì)學(xué)生嚴(yán)密的邏輯思維及思維全面性進(jìn)行恰如其分的訓(xùn)練.
(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)及目標(biāo)完成過(guò)程
1.復(fù)習(xí)提問(wèn)
(1)一元二次方程的一般形式?說(shuō)出二次項(xiàng)系數(shù),一次項(xiàng)系數(shù)及常數(shù)項(xiàng).
(2)一元二次方程的根的判別式是什么?用它怎樣判別根的情況?
2.將復(fù)習(xí)提問(wèn)中的問(wèn)題(2)的正確答案板書(shū),反之,即此命題的逆命題也成立,即“一元二次方程ax2+bx+c=0,如果方程有兩個(gè)不相等的實(shí)數(shù)根,則>0;如果方程有兩個(gè)相等的實(shí)數(shù)根,則=0;如果方程沒(méi)有實(shí)數(shù)根,則<0.”即根據(jù)方程的根的情況,可以決定值的符號(hào),‘’的符號(hào),可以確定待定的字母的取值范圍.請(qǐng)看下面的例題:
例1已知關(guān)于x的方程2x2-(4k+1)x+2k2-1=0,k取什么值時(shí)
(1)方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)方程有兩個(gè)相等的實(shí)數(shù)根;
(1)方程無(wú)實(shí)數(shù)根.
解:a=2,b=-4k-1,c=2k2-1,
b2-4ac=(-4k-1)2-4×2×(2k2-1)
=8k+9.
方程有兩個(gè)不相等的實(shí)數(shù)根.
方程有兩個(gè)相等的實(shí)數(shù)根.
方程無(wú)實(shí)數(shù)根.
本題應(yīng)先算出“”的值,再進(jìn)行判別.注意書(shū)寫(xiě)步驟的簡(jiǎn)練清楚.
練習(xí)1.已知關(guān)于x的方程x2+(2t+1)x+(t-2)2=0.
t取什么值時(shí),(1)方程有兩個(gè)不相等的實(shí)數(shù)根?(2)方程有兩個(gè)相等的實(shí)數(shù)根?(3)方程沒(méi)有實(shí)數(shù)根?
學(xué)生模仿例題步驟板書(shū)、筆答、體會(huì).
教師評(píng)價(jià),糾正不精練的步驟.
假設(shè)二項(xiàng)系數(shù)不是2,也不是1,而是k,還需考慮什么呢?如何作答?
練習(xí)2.已知:關(guān)于x的一元二次方程:
kx2+2(k+1)x+k=0有兩個(gè)實(shí)數(shù)根,求k的取值范圍.
和學(xué)生一起審題(1)“關(guān)于x的一元二次方程”應(yīng)考慮到k≠0.(2)“方程有兩個(gè)實(shí)數(shù)根”應(yīng)是有兩個(gè)相等的實(shí)數(shù)根或有兩個(gè)不相等的實(shí)數(shù)根,可得到≥0.由k≠0且≥0確定k的取值范圍.
解:=[2(k+1)]2-4k2=8k+4.
原方程有兩個(gè)實(shí)數(shù)根.
學(xué)生板書(shū)、筆答,教師點(diǎn)撥、評(píng)價(jià).
例求證:方程(m2+1)x2-2mx+(m2+4)=0沒(méi)有實(shí)數(shù)根.
分析:將算出,論證<0即可得證.
證明:=(-2m)2-4(m2+1)(m2+4)
=4m2-4m4-20m2-16
=-4(m4+4m2+4)
=-4(m2+2)2.
不論m為任何實(shí)數(shù),(m2+2)2>0.
-4(m2+2)2<0,即<0.
(m2+1)x2-2mx+(m2-4)=0,沒(méi)有實(shí)根.
本題結(jié)論論證的依據(jù)是“當(dāng)<0,方程無(wú)實(shí)數(shù)根”,在論證<0時(shí),先將恒等變形,得到判斷.一般情況都是配方后變形為:a2,a2+2,(a2+2)2,-a2,-(a2+2)2,-(a+2)2,……從而得到判斷.
本題是一道代數(shù)證明題,和幾何類(lèi)似,一定要做到步步有據(jù),推理嚴(yán)謹(jǐn).
此種題型的步驟可歸納如下:
(1)計(jì)算;(2)用配方法將恒等變形;
(3)判斷的符號(hào);(4)結(jié)論.
練習(xí):證明(x-1)(x-2)=k2有兩個(gè)不相等的實(shí)數(shù)根.
提示:將括號(hào)打開(kāi),整理成一般形式.
學(xué)生板書(shū)、筆答、評(píng)價(jià)、教師點(diǎn)撥.
(四)總結(jié)、擴(kuò)展
1.本節(jié)課的主要內(nèi)容是教科書(shū)上黑體字的應(yīng)用,求符合題意的字母的取值范圍以及進(jìn)行有關(guān)的證明.須注意以下幾點(diǎn):
(1)要用b2-4ac,要特別注意二次項(xiàng)系數(shù)不為零這一條件.
(2)認(rèn)真審題,嚴(yán)格區(qū)分條件和結(jié)論,譬如是已知>0,還是要證明>0.
(3)要證明≥0或<0,需將恒等變形為a2+2,-(a+2)2……從而得到判斷.
2.提高分析問(wèn)題、解決問(wèn)題的能力,提高推理嚴(yán)密性和思維全面性的能力.
四、布置作業(yè)
1.教材P.29中B1,2,3.
2.當(dāng)方程x2+2(a+1)x+a2+4a-5=0有實(shí)數(shù)根時(shí),求a的正整數(shù)解.
(2、3學(xué)有余力的學(xué)生做.)
五、板書(shū)設(shè)計(jì)
12.3一元二次方程根的判別式(二)
一、判別式的意義:……三、例1……四、例2……
=b2-4ac…………
二、方程ax2+bx+c=0(a≠0)
(1)當(dāng)>0,……練習(xí)1……練習(xí)2……
(2)當(dāng)=0,……
(3)當(dāng)<0,……
反之也成立.
六、作業(yè)參考答案
方程沒(méi)有實(shí)數(shù)根.
B3.證明:=(2k+1)2-4(k-1)=4k2+5
當(dāng)k無(wú)論取何實(shí)數(shù),4k2≥0,則4k2+5>0
>0
方程x2+(2k+1)x+k-1=0有兩個(gè)不相等的實(shí)數(shù)根.
2.解:方程有實(shí)根,
=[2(a+1)]-4(a2+4a-5)≥0
即:a≤3,a的正整數(shù)解為1,2,3
當(dāng)a=1,2,3時(shí),方程x2+2(a+1)x+a2+4a-5=0有實(shí)根.
3.分析:“方程”是一元一次方程,還是一元二次方程,需分情況討論:
(2)當(dāng)2m-1≠0時(shí),
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn):
1.了解根的判別式的概念.
2.能用判別式判別根的情況.
(二)能力訓(xùn)練點(diǎn):
1.培養(yǎng)學(xué)生從具體到抽象的觀察、分析、歸納的能力.
2.進(jìn)一步考察學(xué)生思維的全面性.
(三)德育滲透點(diǎn):
1.通過(guò)了解知識(shí)之間的內(nèi)在聯(lián)系,培養(yǎng)學(xué)生的探索精神.
2.進(jìn)一步滲透轉(zhuǎn)化和分類(lèi)的思想方法.
二、教學(xué)重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決方法
1.教學(xué)重點(diǎn):會(huì)用判別式判定根的情況.
2.教學(xué)難點(diǎn):正確理解“當(dāng)b2-4ac<0時(shí),方程ax2+bx+c=0(a≠0)無(wú)實(shí)數(shù)根.”
3.教學(xué)疑點(diǎn):如何理解一元二次方程ax2+bx+c=0在實(shí)數(shù)范圍內(nèi),當(dāng)b2-4ac<0時(shí),無(wú)解.在高中講復(fù)數(shù)時(shí),會(huì)學(xué)習(xí)當(dāng)b2-4ac<0時(shí),實(shí)系數(shù)的一元二次方程有兩個(gè)虛數(shù)根.
三、教學(xué)步驟
(一)明確目標(biāo)
在前一節(jié)的“公式法”部分已經(jīng)涉及到了,當(dāng)b2-4ac≥0時(shí),可以求出兩個(gè)實(shí)數(shù)根.那么b2-4ac<0時(shí),方程根的情況怎樣呢?這就是本節(jié)課的目標(biāo).本節(jié)課將進(jìn)一步研究b2-4ac>0,b2-4ac=0,b2-4ac<0三種情況下的一元二次方程根的情況.
(二)整體感知
在推導(dǎo)一元二次方程求根公式時(shí),得到b2-4ac決定了一元二次方程的根的情況,稱(chēng)b2-4ac為根的判別式.一元二次方程根的判別式是比較重要的,用它可以判斷一元二次方程根的情況,有助于我們順利地解一元二次方程,也有利于進(jìn)一步學(xué)習(xí)函數(shù)的有關(guān)內(nèi)容,并且可以解決許多其它問(wèn)題.
在探索一元二次方程根的情況是由誰(shuí)決定的過(guò)程中,要求學(xué)生從中體會(huì)轉(zhuǎn)化的思想方法以及分類(lèi)的思想方法,對(duì)學(xué)生思維全面性的考察起到了一個(gè)積極的滲透作用.
(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)及目標(biāo)完成過(guò)程
1.復(fù)習(xí)提問(wèn)
(1)平方根的性質(zhì)是什么?
(2)解下列方程:
①x2-3x+2=0;②x2-2x+1=0;③x2+3=0.
問(wèn)題(1)為本節(jié)課結(jié)論的得出起到了一個(gè)很好的鋪墊作用.問(wèn)題(2)通過(guò)自己親身感受的根的情況,對(duì)本節(jié)課的結(jié)論的得出起到了一個(gè)推波助瀾的作用.
2.任何一個(gè)一元二次方程ax2+bx+c=0(a≠0)用配方法將
(1)當(dāng)b2-4ac>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根.
(3)當(dāng)b2-4ac<0時(shí),方程沒(méi)有實(shí)數(shù)根.
教師通過(guò)引導(dǎo)之后,提問(wèn):究竟誰(shuí)決定了一元二次方程根的情況?
答:b2-4ac.
3.①定義:把b2-4ac叫做一元二次方程ax2+bx+c=0的根的判別式,通常用符號(hào)“”表示.
②一元二次方程ax2+bx+c=0(a≠0).
當(dāng)>0時(shí),有兩個(gè)不相等的實(shí)數(shù)根;
當(dāng)=0時(shí),有兩個(gè)相等的實(shí)數(shù)根;
當(dāng)<0時(shí),沒(méi)有實(shí)數(shù)根.
反之亦然.
注意以下幾個(gè)問(wèn)題:
(1)a≠0,4a2>0這一重要條件在這里起了“承上啟下”的作用,即對(duì)上式開(kāi)平方,隨后有下面三種情況.正確得出三種情況的結(jié)論,需對(duì)平方根的概念有一個(gè)深刻的、正確的理解,所以,在課前進(jìn)行了鋪墊.在這里應(yīng)向?qū)W生滲透轉(zhuǎn)化和分類(lèi)的思想方法.
(2)當(dāng)b2-4ac<0,說(shuō)“方程ax2+bx+c=0(a≠0)沒(méi)有實(shí)數(shù)根”比較好.有時(shí),也說(shuō)“方程無(wú)解”.這里的前提是“在實(shí)數(shù)范圍內(nèi)無(wú)解”,也就是方程無(wú)實(shí)數(shù)根”的意思.
4.例1不解方程,判別下列方程的根的情況:
(1)2x2+3x-4=0;(2)16y2+9=24y;
(3)5(x2+1)-7x=0.
解:
(1)=32-4×2×(-4)=9+32>0,
原方程有兩個(gè)不相等的實(shí)數(shù)根.
(2)原方程可變形為
16y2-24y+9=0.
=(-24)2-4×16×9=576-576=0,
原方程有兩個(gè)相等的實(shí)數(shù)根.
(3)原方程可變形為
5x2-7x+5=0.
=(-7)2-4×5×5=49-100<0,
原方程沒(méi)有實(shí)數(shù)根.
學(xué)生口答,教師板書(shū),引導(dǎo)學(xué)生總結(jié)步驟,(1)化方程為一般形式,確定a、b、c的值;(2)計(jì)算b2-4ac的值;(3)判別根的情況.
強(qiáng)調(diào)兩點(diǎn):(1)只要能判別值的符號(hào)就行,具體數(shù)值不必計(jì)算出.(2)判別根的情況,不必求出方程的根.
練習(xí).不解方程,判別下列方程根的情況:
(1)3x2+4x-2=0;(2)2y2+5=6y;
(3)4p(p-1)-3=0;(4)(x-2)2+2(x-2)-8=0;
學(xué)生板演、筆答、評(píng)價(jià).
(4)題可去括號(hào),化一般式進(jìn)行判別,也可設(shè)y=x-2,判別方程y2+2y-8=0根的情況,由此判別原方程根的情況.
又不論k取何實(shí)數(shù),≥0,
原方程有兩個(gè)實(shí)數(shù)根.
教師板書(shū),引導(dǎo)學(xué)生回答.此題是含有字母系數(shù)的一元二次方程.注意字母的取值范圍,從而確定b2-4ac的取值.
練習(xí):不解方程,判別下列方程根的情況.
(1)a2x2-ax-1=0(a≠0);
(3)(2m2+1)x2-2mx+1=0.
學(xué)生板演、筆答、評(píng)價(jià).教師滲透、點(diǎn)撥.
(3)解:=(-2m)2-4(2m2+1)×1
=4m2-8m2-4
=-4m2-4.
不論m取何值,-4m2-4<0,即<0.
方程無(wú)實(shí)數(shù)解.
由數(shù)字系數(shù),過(guò)渡到字母系數(shù),使學(xué)生體會(huì)到由具體到抽象,并且注意字母的取值.
(四)總結(jié)、擴(kuò)展
(1)判別式的意義及一元二次方程根的情況.
①定義:把b2-4ac叫做一元二次方程ax2+bx+c=0的根的判別式.用“”表示
②一元二次方程ax2+bx+c=0(a≠0).
當(dāng)>0時(shí),有兩個(gè)不相等的實(shí)數(shù)根;
當(dāng)=0時(shí),有兩個(gè)相等的實(shí)數(shù)根;
當(dāng)<0時(shí),沒(méi)有實(shí)數(shù)根.反之亦然.
(2)通過(guò)根的情況的研究過(guò)程,深刻體會(huì)轉(zhuǎn)化的思想方法及分類(lèi)的思想方法.
四、布置作業(yè)
教材P.27中A1、2
五、板書(shū)設(shè)計(jì)
12.3一元二次方程根的判別式(一)
一、定義:……三、例……
…………
二、一元二次方程的根的情況……練習(xí):……
(1)…………
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn):
1.了解根的判別式的概念.
2.能用判別式判別根的情況.
(二)能力訓(xùn)練點(diǎn):
1.培養(yǎng)學(xué)生從具體到抽象的觀察、分析、歸納的能力.
2.進(jìn)一步考察學(xué)生思維的全面性.
(三)德育滲透點(diǎn):
1.通過(guò)了解知識(shí)之間的內(nèi)在聯(lián)系,培養(yǎng)學(xué)生的探索精神.
2.進(jìn)一步滲透轉(zhuǎn)化和分類(lèi)的思想方法.
二、教學(xué)重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決方法
1.教學(xué)重點(diǎn):會(huì)用判別式判定根的情況.
2.教學(xué)難點(diǎn):正確理解“當(dāng)b2-4ac<0時(shí),方程ax2+bx+c=0(a≠0)無(wú)實(shí)數(shù)根.”
3.教學(xué)疑點(diǎn):如何理解一元二次方程ax2+bx+c=0在實(shí)數(shù)范圍內(nèi),當(dāng)b2-4ac<0時(shí),無(wú)解.在高中講復(fù)數(shù)時(shí),會(huì)學(xué)習(xí)當(dāng)b2-4ac<0時(shí),實(shí)系數(shù)的一元二次方程有兩個(gè)虛數(shù)根.
三、教學(xué)步驟
(一)明確目標(biāo)
在前一節(jié)的“公式法”部分已經(jīng)涉及到了,當(dāng)b2-4ac≥0時(shí),可以求出兩個(gè)實(shí)數(shù)根.那么b2-4ac<0時(shí),方程根的情況怎樣呢?這就是本節(jié)課的目標(biāo).本節(jié)課將進(jìn)一步研究b2-4ac>0,b2-4ac=0,b2-4ac<0三種情況下的一元二次方程根的情況.
(二)整體感知
在推導(dǎo)一元二次方程求根公式時(shí),得到b2-4ac決定了一元二次方程的根的情況,稱(chēng)b2-4ac為根的判別式.一元二次方程根的判別式是比較重要的,用它可以判斷一元二次方程根的情況,有助于我們順利地解一元二次方程,也有利于進(jìn)一步學(xué)習(xí)函數(shù)的有關(guān)內(nèi)容,并且可以解決許多其它問(wèn)題.
在探索一元二次方程根的情況是由誰(shuí)決定的過(guò)程中,要求學(xué)生從中體會(huì)轉(zhuǎn)化的思想方法以及分類(lèi)的思想方法,對(duì)學(xué)生思維全面性的考察起到了一個(gè)積極的滲透作用.
(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)及目標(biāo)完成過(guò)程
1.復(fù)習(xí)提問(wèn)
(1)平方根的性質(zhì)是什么?
(2)解下列方程:
①x2-3x+2=0;②x2-2x+1=0;③x2+3=0.
問(wèn)題(1)為本節(jié)課結(jié)論的得出起到了一個(gè)很好的鋪墊作用.問(wèn)題(2)通過(guò)自己親身感受的根的情況,對(duì)本節(jié)課的結(jié)論的得出起到了一個(gè)推波助瀾的作用.
2.任何一個(gè)一元二次方程ax2+bx+c=0(a≠0)用配方法將
(1)當(dāng)b2-4ac>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根.
(3)當(dāng)b2-4ac<0時(shí),方程沒(méi)有實(shí)數(shù)根.
教師通過(guò)引導(dǎo)之后,提問(wèn):究竟誰(shuí)決定了一元二次方程根的情況?
答:b2-4ac.
3.①定義:把b2-4ac叫做一元二次方程ax2+bx+c=0的根的判別式,通常用符號(hào)“”表示.
②一元二次方程ax2+bx+c=0(a≠0).
當(dāng)>0時(shí),有兩個(gè)不相等的實(shí)數(shù)根;
當(dāng)=0時(shí),有兩個(gè)相等的實(shí)數(shù)根;
當(dāng)<0時(shí),沒(méi)有實(shí)數(shù)根.
反之亦然.
注意以下幾個(gè)問(wèn)題:
(1)a≠0,4a2>0這一重要條件在這里起了“承上啟下”的作用,即對(duì)上式開(kāi)平方,隨后有下面三種情況.正確得出三種情況的結(jié)論,需對(duì)平方根的概念有一個(gè)深刻的、正確的理解,所以,在課前進(jìn)行了鋪墊.在這里應(yīng)向?qū)W生滲透轉(zhuǎn)化和分類(lèi)的思想方法.
(2)當(dāng)b2-4ac<0,說(shuō)“方程ax2+bx+c=0(a≠0)沒(méi)有實(shí)數(shù)根”比較好.有時(shí),也說(shuō)“方程無(wú)解”.這里的前提是“在實(shí)數(shù)范圍內(nèi)無(wú)解”,也就是方程無(wú)實(shí)數(shù)根”的意思.
4.例1不解方程,判別下列方程的根的情況:
(1)2x2+3x-4=0;(2)16y2+9=24y;
(3)5(x2+1)-7x=0.
解:
(1)=32-4×2×(-4)=9+32>0,
原方程有兩個(gè)不相等的實(shí)數(shù)根.
(2)原方程可變形為
16y2-24y+9=0.
=(-24)2-4×16×9=576-576=0,
原方程有兩個(gè)相等的實(shí)數(shù)根.
(3)原方程可變形為
5x2-7x+5=0.
=(-7)2-4×5×5=49-100<0,
原方程沒(méi)有實(shí)數(shù)根.
學(xué)生口答,教師板書(shū),引導(dǎo)學(xué)生總結(jié)步驟,(1)化方程為一般形式,確定a、b、c的值;(2)計(jì)算b2-4ac的值;(3)判別根的情況.
強(qiáng)調(diào)兩點(diǎn):(1)只要能判別值的符號(hào)就行,具體數(shù)值不必計(jì)算出.(2)判別根的情況,不必求出方程的根.
練習(xí).不解方程,判別下列方程根的情況:
(1)3x2+4x-2=0;(2)2y2+5=6y;
(3)4p(p-1)-3=0;(4)(x-2)2+2(x-2)-8=0;
學(xué)生板演、筆答、評(píng)價(jià).
(4)題可去括號(hào),化一般式進(jìn)行判別,也可設(shè)y=x-2,判別方程y2+2y-8=0根的情況,由此判別原方程根的情況.
又不論k取何實(shí)數(shù),≥0,
原方程有兩個(gè)實(shí)數(shù)根.
教師板書(shū),引導(dǎo)學(xué)生回答.此題是含有字母系數(shù)的一元二次方程.注意字母的取值范圍,從而確定b2-4ac的取值.
練習(xí):不解方程,判別下列方程根的情況.
(1)a2x2-ax-1=0(a≠0);
(3)(2m2+1)x2-2mx+1=0.
學(xué)生板演、筆答、評(píng)價(jià).教師滲透、點(diǎn)撥.
(3)解:=(-2m)2-4(2m2+1)×1
=4m2-8m2-4
=-4m2-4.
不論m取何值,-4m2-4<0,即<0.
方程無(wú)實(shí)數(shù)解.
由數(shù)字系數(shù),過(guò)渡到字母系數(shù),使學(xué)生體會(huì)到由具體到抽象,并且注意字母的取值.
(四)總結(jié)、擴(kuò)展
(1)判別式的意義及一元二次方程根的情況.
①定義:把b2-4ac叫做一元二次方程ax2+bx+c=0的根的判別式.用“”表示
②一元二次方程ax2+bx+c=0(a≠0).
當(dāng)>0時(shí),有兩個(gè)不相等的實(shí)數(shù)根;
當(dāng)=0時(shí),有兩個(gè)相等的實(shí)數(shù)根;
當(dāng)<0時(shí),沒(méi)有實(shí)數(shù)根.反之亦然.
(2)通過(guò)根的情況的研究過(guò)程,深刻體會(huì)轉(zhuǎn)化的思想方法及分類(lèi)的思想方法.
四、布置作業(yè)
教材P.27中A1、2
五、板書(shū)設(shè)計(jì)
12.3一元二次方程根的判別式(一)
一、定義:……三、例……
…………
二、一元二次方程的根的情況……練習(xí):……
(1)…………